

Motivation and contributions

Motivation:

- Save physicians' valuable time.

Contributions:

- Provide the first weakly-annotated polyp dataset, W-Polyp.
- WS-DefSegNet.
- loss.
- Propose a novel progressive multi-scale architecture with a self-attention mechanism, **DTEN**.

W-Polyp dataset

Information:

- ► 1450 images in total.
- circles.
- ► 700 images left unlabeled.

ground and background annotations. (d) Our weak annotations.

- Weighted loss between two loss functions.

CVPR VISION workshop 2023

Towards Automated Polyp Segmentation Using Weakly- and Semi-Supervised Learning and Deformable Transformers

Imperial College London

Our implementation is based on PyTorch and OpenCV.

Feature add

Feature add

Deformable Transforme

Encoder Neck (DTEN)

Feature add

Implementation details

→0√

Feature add

CG Conv + GroupNorm

Guangyu Ren, Michalis Lazarou, Jing Yuan, Tania Stathaki

Ablation study

Mathad	ColonDB		ETIS		Kvasir		CVC-300		ClinicDB	
Iviethou	mDice	mloU	mDice	mloU	mDice	mloU	mDice	mloU	mDice	mloU
L_p	0.327	0.263	0.218	0.168	0.555	0.488	0.240	0.174	0.479	0.448
L_{weak}	0.539	0.503	0.442	0.415	0.700	0.668	0.662	0.658	0.740	0.708
$L_{weak} + L_c$	0.604	0.544	0.501	0.442	0.730	0.677	0.729	0.678	0.771	0.718
$L_{weak} + DTEN$	0.609	0.538	0.541	0.472	0.728	0.665	0.754	0.702	0.772	0.707
$L_{weak} + DTEN + L_c$	0.667	0.588	0.596	0.517	0.768	0.709	0.795	0.728	0.807	0.746
Backbone [†]	0.688	0.612	0.646	0.568	0.851	0.796	0.856	0.785	0.833	0.768
+DTEN†	0.723	0.640	0.664	0.583	0.862	0.805	0.861	0.805	0.854	0.791

Ablation study with mDice and mIoU on five challenging datasets: ColonDB, ETIS, Kvasir, CVC-300 and ClinicDB. Upper part: the network is trained through our weak annotations. †: denotes models trained using fully-supervised training through regular dense annotations. The best results are in **bold**.

 $+ \mathsf{DTEN}.$

State of the art comparisons

Labe

U-Net(MICCAI'15)[4]
U-Net++(TMI'19)[6]
ResUNet+(ISM'19)[3]
SFA(MICCAI'19)[2]
PraNet(MICCAI'20)[1]
CAL(ICCV'21)*[5]
Ours

eled Pi
13.4%
13.4%
13.4%
13.4%
13.4%
4.0%
1.9%

Evaluation results of different methods on five datasets.*uses semi-supevised training. Ours: denotes our method that is trained using weakly- and semi-supervised training.

Imperial College London

Visual comparison of ablation study. (a) RGB image. (b) Original ground truth (c) L_p . (d) $L_p + \alpha L_f$. (e) L_{semi} . (f)

	ColonDB		ETIS		Kvasir		CVC-300		ClinicDB	
els	mDice	mloU	mDice	mloU	mDice	mloU	mDice	mloU	mDice	mloU
	0.512	0.444	0.398	0.335	0.818	0.746	0.710	0.627	0.823	0.755
	0.483	0.410	0.401	0.344	0.821	0.743	0.707	0.624	0.794	0.729
	-	-	-	-	0.813	0.793	-	-	0.796	0.796
	0.469	0.347	0.297	0.217	0.723	0.611	0.467	0.329	0.700	0.607
	0.709	0.640	0.628	0.567	0.898	0.840	0.871	0.797	0.899	0.849
	-	-	-	-	0.810	0.716	-	-	0.893	0.826
	0.667	0.588	0.596	0.517	0.768	0.709	0.795	0.728	0.807	0.746

[1] D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao. Pranet: Parallel reverse attention network for polyp segmentation. International conference on medical image computing and computer-assisted intervention, pages 263–273. Springer, 2020.

[2] Y. Fang, C. Chen, Y. Yuan, and K.-y. Tong. Selective feature aggregation network with area-boundary constraints for polyp segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 302–310. Springer, 2019.

[3] D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. De Lange, P. Halvorsen, and H. D. Johansen. Resunet++: An advanced architecture for medical image segmentation. In 2019 IEEE International Symposium on Multimedia (ISM), pages 225–2255. IEEE, 2019.

[4] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[5] H. Wu, G. Chen, Z. Wen, and J. Qin. Collaborative and adversarial learning of focused and dispersive representations for semi-supervised polyp segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3489–3498, 2021.

[6] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang. Unet++: A nested u-net architecture for medical image segmentation. In Deep learning in medical image analysis and multimodal learning for clinical decision support, pages 3–11. Springer, 2018.

Contact: {g.ren19, michalis.lazarou14, j.yuan20, t.stathaki}@imperial.ac.uk